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1. Introduction 
When I was first asked to give a general lecture to the 5th British Theoretical 

Mechanics Colloquium (held a t  Liverpool University, 2-5 April 1963), I put 
up the title ‘Shock Waves’, thinking that I might run over a wide field of 
present-day research, pointing out some of the unanswered problems. In  the 
intervening months, however, I came across the new book by Dr Bradley (1962) 
of Liverpool University, The Physics and Chemistry of Shock Waves, and as 
recently as last November there appeared a summarizing article by Pain bt 
Rogers (1962) of London University in Reports o n  Progress in Physics. The first 
of these deals in great detail with the modern physical and chemical aspects of 
the subject-with real gas effects and experimental techniques-and the second 
summarizes the general classical properties and gives an extended account of 
recent work, for example, on real gas effects and on magnetohydrodynamics. 
I also bore in mind that magnetogasdynamics received a majestic treat- 
ment at the 4th Colloquium from Dr Shercliff. I n  the end, then, I decided 
to confine my remarks to one particular problem, namely the reflexion and 
diffraction of shock waves, and to concentrate mainly on developments during the 
past ten years. This paper is the text of the lecture. 

Experimentally, in the laboratory, there are two ways in which shock reflexion 
may be studied. Shocks may reflect off one another, or they may reflect off 
surfaces. If two ?hocks of equal strength reflect off one another their interaction 
is equivalent to the reflexion of a shock from a rigid boundary neglecting bound- 
ary-layer effects. The first experimental work on shock waves, carried out by 
Ernst Mach and his associates in the 1 8 7 0 ’ ~ ~  was of this kind. Reflexion off solid 
malls is usually studied in a shock tube, and it is interesting to note that this 
instrument was invented as long ago as 1899 by Vieille, a French scientist, so 
that the tools for the investigation of this subject were available before the turn 
of last century. It was not, however, until the last war that the subject got 
thoroughly under way, and it continues to provide some challenging problems 
both for the theoretical and experimental worker. 

2. Normal reflexion 
The simplest possible example of a reflexion is that of a shock hitting a rigid 

wall head-on. The boundary condition is that the gas adjacent to the wall stays 
a t  rest. Application of the Rankine-Hugoniot equations shows that, for an ideal 
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gas, with y = 1.4, for example, the multiplication factor for the pressure in the 
incident wave can be as great as 8. This fact has been put to good experimental 
use for the study of the properties of gases at high temperatures. Bradley 
(1962) quotes the example of a shock-tube diaphragm pressure ratio of 95 with 
helium as the driving gas producing a reflected shock temperature in argon of 
4000°K. A diaphragm pressure ratio of 1600 would be required to produce 
the same temperature rise in the incident shock. Then again, by choosing a 
reaction that occurs rapidly at high temperatures, the shock reflexion can be 
utilized to create detonation, and the initiation of this can be studied at the far 
end of the tube (see, for example, Strehlow & Cohen 1962). Herzberg and others 
have employed the high-pressure property to create hypersonic nozzle flow out 
of the end of a shock tube. The flow is not usually ‘ideal’ under these circum- 
stances, particularly if there are long relaxation times in the gas, and ’I shall have 
something to say later about the effect of the lateral boundary layers on the 
reflexion properties. 

An interesting refinement of the reflexion problem has been given by Golds- 
worthy (1959) for his treatment of the reflexion of a shock wave from a heated 
wall. The effect of the heat is to create, behind the reflected shock, a contact 
discontinuity separating heated from unheated gas. It is supposed that at time 
t = 0 a plane shock of given strength is reflected from a wall a t  initial temperature 
TI. The temperatures in the wall and in the gas are found subject to the tem- 
peratures being TI a t  the edge of the contact region in the wall and T3 determined 
by inviscid theory at the edge of the contact region in the gas. The temperature 
and the flux of heat are continuous at the wall. From the temperature distribu- 
tion, the velocity distribution in the gas is determined by using the condition 
that the particle velocity must be zero a t  the wall. To find the pressure of the 
gas in this region it is necessary to calculate the perturbed flow external to the 
contact region. The perturbation is small when the shock is at a distance from 
the wall much greater than the molecular mean free path. The problem reduces 
to that of solving the wave equation with the boundary condition for the velocity 
u = u, a t  the edge of the contact region linearized by applying it a t  the 
wall. It is found that the perturbation to the reflected shock speed varies 
inversely as the square root of the time. 

The reflexion of a normal shock wave a t  the interface between two media 
involves the transmission of a shock wave; the nature of the reflected wave is 
governed by the ratio of the shock impedances across the interface, the shock 
impedance of a medium being defined as the product of the equilibrium density 
and the speed of the shock wave moving downstream through it. A shock wave is 
always reflected from a medium of greater shock impedance. This criterion is 
very simple, but unfortunately one does not know the speed of the transmitted 
shock until the whole phenomenon has been determined. For gases it has been 
known for a long time (Paterson 1948) that, in general, the ratio of acoustic 
impedances is decisive, where, to compute the acoustic impedance, one sub- 
stitutes the speed of sound for the shock velocity. 

It has been shown (Pack 1957a) that for the reflexion of a detonation wave, 
with detonation products treated as an ideal gas with a constant ratio of specific 
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heats y ,  a very simple rule can be obtained, namely that the reflexion is a rare- 
faction or a shock wave according as 

(Y + 1) (Polro) (1 - b"O/Yl ) }  ' or < 1, 

where r l  is the density in the second medium corresponding to the passage 
through it of a shock wave with the pressure of the incident wave. As one might 
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FIGURE 1. The incident shock wave strikes the target OP at 0. O L  is the reflected shock. 
The motion is one-dimensional. OBDF is the path of the front face of the target and PACE 
the path of the rear face. Time t is measured to the right (Pack 1957b).  

expect a reflected rarefaction wave is the rule for explosives in contact with a 
gas or with water. For an explosive in contact with a solid a suflcient condition 
for a reflected shock is that the transmitted shock should advance with a speed 
greater than the speed of elastic waves. This is not always satisfied, e.g. for 
some explosives in contact with a steel target. Nevertheless, rough calculations 
suggest that a reflected shock seems likely to be the general rule. The importance 
of calculations of this type is in connexion with the determination of the proper- 
ties of explosion products, in which for obvious reasons direct experimentation 
is very difficult or even impossible. It has also been used for the study of the 
behaviour of liquids and solids under high pressures. Measurements of the speed 
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of the shock transmitted through a second medium and the rate of initial motion 
of the rear surface when this medium is solid can be correlated with features of 
the incident pulse. For a uniform incident shock wave, falling upon a slab of 
finite thickness, the acceleration of the slab is achieved in finite jumps, as in 
figure 1, where the transmitted shock is supposed to be a t  a pressure below the 
elastic limit. The successive rarefactions a t  B, D, P, ... produce simple wave 
variations on the flow behind the reflected shock until such time as the first of 
these, reflected, reaches back to the target. 

A development of this simple theory, allowing for a simple wave expansion of 
the detonation products but neglecting entropy changes, was used for example by 
AbIow (1960) to compute an effective ratio of specific heats for an explosive 
composition. Modern methods of measurement involving pressure transducers 
seem likely to make i t  possible to follow events inside certain suitable materials 
with considerable precision, allowing much more detailed deductions to be made 
from experimental results. This kind of work proceeds often on the basis of quite 
crude assumptions about equations of state, but many very important results 
have come from these efforts. 

3. Oblique reflexion 
I n  natural phenomena normal reflexion is, of course, a very special circum- 

stance. There is usually some angle of inclination between a shock and another 
shock or a body upon which it impinges. Two kinds of problem emerge. The first, 
that of stationary $ow, arose in Mach’s work on supersonic jets, which led to  
patterns still not entirely understood. The first comprehensive observations on 
freely intersecting shocks in stationary flow were carried out in the United 
Kingdom by Lean (1943, l946), who studied the flow between wedges placed in 
a wind-tunnel. During the last war the shock tube was used extensively for 
investigations of the reflexion and diffraction of shock waves by a solid obstacle, 
on account of the importance of this subject in assessing the effect of blast waves. 
The experiments of L. G. Smith (1945) are probably the most-quoted. In this 
work a shock wave, moving down the tube, struck a wedge fixed in the tube. 
The reflected shock pattern, originating a t  the apex of the wedge, began 
to develop uniformly with time. This illustrated the second type of problem, that 
of pseudo-stationary Jrow. The theory of shock wave reflexion, on the basis of 
straight shocks meeting at a point and separated by regions of uniform flow, has 
h e n  examined exhaustively by Yolachek & Seeger ( 1949). 

3.1. Regular reJlexion 
The simplest configuration is that of regular re$exion and is represented in figure 2 .  
Let the shock wave, travelling with velocity U ,  strike a rigid wall a t  an angle 0 
a t  the point 0. This point moves along the wall with a velocity U cosec 8. By 
imposing an equal and opposite velocity on the whole system we are led to 
consider the flow of a gas through a stationary shock 01, as in the lower part of 
the figure. This flow is deflected through an angle Q1 (further away from the 
normal). Since it must end up parallel to the wall a further front is needed 
through the point 0. This is the reflected shock wave OR. The whole motion is 
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equivalent to flow past successive wedges of semi-angle $, as shown in the upper 
part of the figure. This provides a key to the understanding of possible solutions. 
This kind of shock pattern is only possible if the flow behind 01 is supersonic and 
if the required deflexion through OR can be achieved with the Mach number 
found. For a given Mach number of the incident shock, there is a maximum 

, / / I , / / , / , / / / / / / / , / , / / / / / / / ,  

0 
FIGURE 2. Regular reflexion a t  a rigid wall. 

FIGURE 3. Mach reflexion in diffraction by a wedge. The case illustrated corresponds to 
flow past a wedge with a Mach number resulting in a detached bow shock. 

angle of incidence 8 = 8, for which regular reflexion may occur. Polachek SL 
Seeger based their calculations on the assumption that when there are two 
possible shocks producing a given deflexion it is the weaker that will occur. 
This is an experimental fact for shocks attached to bodies in supersonic flow 
and is justified here by the excellent accord between theory and experiment for 
regular reflexions. It is significant in this respect that the simple two-shock 
solution, with regions of uniform flow, is a solution in both stationary and 
pseudo-stationary flow which satisfies the boundary conditions at the wall or 
plane of symmetry. I shall not go into the detailed properties of these reflexions, 
for which the original paper may be consulted, but will pass on to the subject of 
greatest interest, that of the shock pattern when regular reflexion is not possible. 
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3.2. Mach rejexion 

When regular reflexion does not occur, the incident and reflected shocks stand 
off from the wall (figure 3) being joined to it by a third shock wave, often referred 
to as a ‘Mach stem’ in honour of Mach’s early experiments. The gas swept up 
by this stem has to flow side-by-side with gas that has passed through both the 
incident and reflected shocks. It is therefore essential that a contact discon- 
tinuity should pass through the so-called ‘triple point’ of intersection of the 
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FIGURE 4. Comparison of theory and experiment in regular and Mach reflexion. 6 = ratio 
of pressure ahead of to the pressure behind the incident shock, w and w’ are the angles 
made by the incident and reflected shocks respectively with the path of the intersection 
of these shocks (i.e. the path of the triple point in Mach reflexion and the wall in regular 
reflexion). The points enclosed in square boxes represent values of w and w’ at which the 
total flow behind the incident shock is just sonic with respect to an observer moving with 
the triple point. There can be no solutions for w greater than this limiting value (Bleakney 
& Taub 1949). 

shocks. When the configuration starts at  the wedge tip the triple point follows 
a path through this point, and the direction of motion of the point gives an 
additional parameter. The strength of the reflected shock in the three-shock 
configuration agrees tolerably with calculated results for strong incident shocks, 
but the experimental results differ very widely from the theoretical for weak 
incident shocks. Examples for values 0.8 (weak) and 0.2 (strong) of the ratio of 
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pressures across the incident shock are shown in figure 4. The calculations assume 
that near the triple point the shocks are straight, that there are regions of uniform 
flow between them, and that the two-dimensional unsteady flow remains geo- 
metrically similar a t  all times. This kind of flow, as indicated earlier, is called 
‘ pseudo-stationary ’ and its solution can be described completely in terms of the 
‘conical’ co-ordinates xlt, ylt. 

3.3. The transition f rom regular reJlexion to Mach rejexion 

Until very recently it was claimed that regular reflexions were observed for angles 
of incidence greater than those allowed by theory (cf. figure 4). This was stated to 
be the case also for refraction of shocks from a gaseous interface in the work of 
Jahn (1957). The resolution of this difference between theory and experiment 
seems to have been made recently by W. R. Smith (1959). He reflected the inci- 

FIGURE 6. Formation of interacting shock waves of unequal strengths by reflexion of an 
initial shock wave from a concave corner. In  the upper figure the initial shock wave S,  
reflects from the solid plate W ,  and the slotted plate W ,  held by the variable angle holder 
H to form the reflected shock waves S, and 8,. Sonic corner signals C, and C, propagate 
from the ends of W ,  and W,. In  the lower figure S,  has disappeared, and S, and S, are 
interacting. The arrows indicate motions relative to the laboratory (W. R. Smith 1959). 
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dent shock wave S ,  against a concave corner (figure 5), the upper wall of which was 
a solid steel plate and the lower either a slotted plate (to produce unequal shocks 
on reflexion), or another solid steel plate (to produce equal shocks). Equal 
shocks here give the equivalent of reflexion from a solid wall without boundary- 
layer interference. His important findings were 

(i) that where both Mach and regular reflexion may theoretically occur for 
a given initial flow, only regular reflexion occurs; 

(ii) the transition from regular to Mach reflexion with increasing incidence 
depends on whether regular reflexion is impossible; 

(iii) the slipstreams provide the most sensitive and most conclusive proof of 
Mach reflexion. 

Since the slipstreams were invisible in interferograms showing a decided Mach 
shock, he inferred that interferograms were completely useless in determining 
the transition between regular and Mach reflexion. Schlieren photographs and 
shadowgrams do show the slipstreams. Since the angle x made by the triple point 
grows only slowly with increasing incidence a for reflexion of weak waves from 
a wedge, the wedge obscures the slipstream until the triple point has propagated 
a good way from the wedge. Smith concludes that this explanation accounts for 
the apparent discrepancies noted by Jahn in his work on refraction. 

Experimental work has not yet been able to determine whether transition 
occurs at the maximum possible angle a, or at the stage when subsonic speed 
begins behind the reflected shock. Theoretical comparison with flow past a wedge 
would suggest that the maximum angle should be the critical one, but it is 
difficult to differentiate experimentally between these points. Since when the 
shocks are unequal there are two sonic points, one for the flow behind each of the 
reflected shocks, Smith conjectured that it might be possible by a suitable 
choice of shocks of unequal strength to conduct a decisive experiment, but he 
shot his own conjecture down last year (Smith 1963) when he showed that for 
shocks with a ratio of strengths varying from 1 to 100, with the weaker varying 
between 1.1 and 10, the sonic and extreme angles never varied by more than 1.1". 

The refraction experiments of Jahn (1956), like those of Smith, avoid the 
interference of a corner, so that all observed effects may be attributed to the 
shock intersection. Here there is an even more complex range of possibilities. 
The 'regular' pattern involves a transmitted shock wave, a reflected shock or 
rarefaction wave, and a deflexion of the interface to accommodate the pressure 
changes. A photograph of a regular refraction with a reflected rarefaction wave 
is given in figure 6. Ext,ensive calculations for these configurations were pub- 
lished by Taub (1947) and by Polachek & Seeger (1951). Jahn's work provides 
good confirmation of their results. 

In  his second paper Jahn (1957) examines the transition processes more fully. 
He conjectures that the subsonic flow behind the reflected shock may contain 
singularities near the wall, because he observes a severe rarefaction zone behind 
the reflected shock for a just greater than a,. Since Jahn's work was interfero- 
metric and the angle under discussion comes in the region where, according 
to Smith, there would be a slipstream invisible to this technique, I think we have 
to treat his assumption of regular reflexion with reserve. Guderley, in earlier 
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work, had shown the role of singularities in the description of flow past wedges 
with subsonic flow behind the attached shock, and he pointed out in his book 
(1962) that the same singular behaviour would apply near the limit of regular 
reflexion. Jahn (1957) drew attention to this analogy, pointing out that it had 
not been thought about sufficiently deeply in connexion with the understanding 
of Mach shocks. It was Sternberg (1959) who took up these considerations in 
detail. 

FIGURE G .  An interferogram of regular refraction at an air/CO, interface. I ,  T are the 
incident and transmitted shocks, RR a reflected rarefaction, 0 and D are the original and 
deflected interfaces, B the back plate and TR the reflexion of T from B (Jahn 1956). 

3.4. Three-shock th.eories 

The theory of shock polars indicates that the expected sequence of events, with 
increasing angle of incidence of a shock of given strength, is: 

(i) regular reflexion with supersonic flow behind the reflected shock, 
(ii) regular reflexion with subsonic flow behind the reflected shock, 
(iii) Mach reflexion with subsonic flow behind the Mach stem, 
(iv) no intersection of shock polars in the subsonic domain. 

For case (iv) Guderley (1962) suggested that a reflected shock be fitted in to give 
just subsonic flow, followed by an expansion wave of Prandtl-Meyer type. This 
kind of flow can be uniquely determined. I n  figures 7 and 8 flows of types (iii) and 
(iv) are represented in both the hodograph and physical planes. The existence 
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of these flows has been questioned on the grounds that they require the reflected 
shock to point upstream at the triple point. Experimentally they have not been 
fully substantiated, for although angles of greater than 90" have been reported 
by experimenters, this has not yet occurred under circumstances entirely free 
from criticism. The region of Mach reflexion divides into three parts, according 
as the point indicating the reflected shock lies in the supersonic region, between 
the sonic point and the Crocco point, or between the Crocco point and the point 
of maximum deflexion on the shock polar. The types are as drawn in figure 9. 
On a shock polar, as Busemann showed many years ago, the streamline directions 
in the hodograph plane are determined in advance. At the intersection of two 
shock polars it is therefore a coincidence if these directions are compatible. If 
they are not, then some kind of singularity is necessary. The work of Cllutterham 

B = C  3, F ,( Subsonic region 

E D  

FIGURE 7.  Hodograph representation with shock polars for the jet flow in the physical 
plane illustrated on the right. BD is the sonic line, BC is a characteristic representing a 
Prandtl-Meyer expansion point-localized at B in the physical plane. 7 is a speed variablo 
representing departure from sonic speed: 7 > 0 for supersonic speed, 7 < 0 for subsonic. 
8 represents the inclination of the flow to the incident stream in region I (point I of the 
hodograph plane) (Guderley 1962). 

& Taub (1956) gave for the angle x of the path of the slipstream in pseudo-station- 
ary flow, x = a + ~ ( g ) ,  where a is the angle of incidence and ~ ( 6 )  a function of g, 
the strength of the incident shock. Thus, for a shock of given strength, ax/aa = 1. 
This result, contradicted by experiment, must fail whenever the shock wave 
topology a t  the triple point is not analytic, analyticity being assumed in the 
theory. The streamline contradictions are indicated by the arrows in the right- 
hand parts of figure 9. These, illustrated here on shock-polars in the ( p ,  €')-plane, 
are resolved by singularities in such a way that if the streamlines converge at 
the point of intersection the shock curvature I<, in the physical plane tends to 
infinity, while if they diverge li, -+ 0. At low supersonic Mach numbers the inter- 
sections fall in subsonic parts of both shock polars. For M > 3-2 the intersections 
may fall on the supersonic portion of the reflected shock polar. At high Mach 
numbers the sequence of events is that, when Mach reflexion starts, the inter- 
sections are of type C. For this type there is no curvature at  the triple point, 
which presumably accounts for the agreement with theory. As the incidence 
increases there is a set of group B. The curvature is again zero, the conditions 
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behind the reflected shock corresponding to a point between the sonic and Crocco 
points. Then come group A intersections extending to incident shock waves close 
to the extreme angle. For these, the curvature is infinite. These are the only 
types possible for shocks with incident Mach number M < 3.2, not such a low 

E 

FIGURE 8. Guderley’s solution for the flow at the triple point when the shock polars do not 
intersect. The characteristic FG represents a point-localized Prandtl-Meyer expansion 
a t  F .  The flow in the vicinity of point F ,  with indications of the streamline pattern in the 
hodograph plane and of the limited supersonic region in the physical plane, is illustrated 
by two enlarged sketches of the neighbourhood of F (Guderley 1962). 

Mach number. At last there is a small range where Guderley’s solution is 
applicable. Sternberg (1959) has shown that the lower part of the hodograph 
plane in a Guderley intersection does not reveal itself in experiments and must 
therefore lie in the experimentally obscure region near the triple point, if it has 
any physical reality. Yet an analysis of shock-tube data and electric tank experi- 
ments carried out by Sternberg requires that this region should be clearly dis- 
tinguishable. He admits that the experimental evidence is not conclusive, but 
says, quite rightly, that in any case shock polars ought not to be used for regions 
in which the radius of curvature of shocks is comparable with the thickness as 
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here. All of the streamlines on which the ratio of these quantities is unfavourable 
occur within 0.1 mm of the triple point and are therefore unobservable in the 
experiments. Nevertheless, as he points out, the distributions of pressure and 
temperature within the incident and reflected shocks, on classical Becker theory 
-which is good enough for this comparison-are incompatible with that through 
the Mach stem, and he concludes that there must be a finite shock zone with 
significant pressure and temperature gradients along the front as well as normal 

Mi = 1.636 pi = 50’ p ,  B Plane 
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‘ I  Mi = 2.69 Bi = 51.5“ 
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Mi = 2.86 Bi = 47.5” 
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FIGURE 9. Types of three-shock intersections. Arrows in the right-hand sketches show the 
directions of streamlines on ( p ,  0) shock polars, illustrating their incompatibility in the 
hodograph plane (Sternberg 1959). 

to it. He calls this region a non-Rankine-Hugoniot shock wave, and constructs 
a model for i t  based on Becker solutions for individual shocks and conservation 
over-all. For the case considered in detail in his paper he finds that the height of 
the transition region is several times greater than the shock thickness, that the 
reflected shock and Mach stem have large curvatures in a small unobservable 
region, and that equality of pressure and direction across the ‘slipstream’ will 
not necessarily apply immediately downstream; there will be an ‘equalization 
zone’, of size dependent upon the subsonic flow field downstream. On the other 
hand, the height of the non-Rankine-Hugoniot zone is usually very much less 
than the scale length in a wind-tunnel test or the distance from the apex of the 
wedge in a pseudo-stationary flow, and for this reason the pseudo-stationary 
conditions are observed for the path of the triple point. The non-Rankine- 
Hugoniot shock leads to a new boundary of the flow field in the hodograph plane 
linking the reflected and Mach shock polars. This boundary is not independent 
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of the subsonic downstream field; but experiments suggest that the particular 
shape of this boundary does not have much effect away from the intersection, 
and it is difficult to escape the conclusion that all Sternberg has proved is that the 
early pre-occupation with angle-measuring near the triple point was a waste of 
time in most cases. He has cast some doubt on the physical reality of Guderley’s 
solutions, but he has certainly not proved that treatments of overall flow based 
on inviscid theory do not give good results, except in this non-Rankine-Hugoniot 
region. There is too much evidence, where direct comparisons have been made, 
that inviscid treatments of three-shock flows give good results, even when no 
attempt is  made to get the rejected shock correct, as in the linearized approximations 
of Lighthill (1949a) and of Ting & Ludloff (1952) which assumed the reflected 
shock to be a Mach wave. Nevertheless, his work suggests another look a t  the 
nature of the flow between the shock-wave and the surface of a solid body in 
supersonic flow when this flow is subsonic and has a Mach number less than that 
corresponding to the Crocco point. Cabannes & Stael(l961) have worked out the 
details of the inviscid flow under these circumstances; the flow near the singular 
point is here additionally complicated by the presence of a boundary layer on 
the surface as well as infinite shock curvature ! 

3.5. General methods 
At this point I might mention that Lighthill’s (1949a) method of dealing with 
conical flows has led recently to a number of interesting investigations. There 
is Smyrl’s solution (1963) for the impact of a shock wave of arbitrary strength 
on a supersonic aerofoil, built up from the conical solution appropriate to a 
wedge. For the latter (figure 10) there is an even more complicated shock wave 
pattern, of incident shock, initial attached shock, final attached shock, bridging 
shock, Mach stem and contact discontinuity I0 dividing air which crosses the 
shock front directly from region 0 from that which crosses from region ( 2 ) .  Smyrl 
assumes that, outside the sonic circle, there are only uniform regions and that 
the shock front I A  is straight, except for the portion AB which must bend in 
order to meet the wedge normally. This picture is the one giving the smallest and 
simplest disturbed region consistent with the physical facts. The hypotheses 
have been largely supported by an elegant use of the hydraulic analogy for 
an unsteady flow by Klein. A photograph taken from a film of Klein’s work is 
shown in figure 11, plate 1. 

Another recent application of these techniques has been to the problem of a 
shock-wave passing from land to water over an inclined bottom. The high ratio 
of the density of the water to air ensures only small displacements of the water 
surface. For a normal shock the reflexion is necessarily a Mach reflexion. The 
solution involves an additional wave in either the air or the water resulting 
from the difference in sound speeds across the interface. This work is due to 
Bezhanov (1962). 

3.6. Computational solutions 

I have yet to mention mathematical experimentation in this field. Ludloff 
& Friedman (1955) did two computations for the case in which the shock incident 

36 Fluid Meoh. 18 
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on a wedge is not suEcient to provide an attached shock. The bow shock then 
stands off from the wedge and since the whole picture scales up with time, it 
must recede further and further away. Unless the wedge side is finite there is 
then no ultimate steady solution, The problem of relating the stand-off to wedge 
side by consideration of the asymptotic nature of the unsteady flow seems never 
to have been studied. The first of the methods used by Ludloff & Friedman in 

t-- (J t - -+ 

FIGURE 10. The main flow regions after the flying wedge has penetrated the shock front. 
L is the leading edge, I the intersection of the shock and the original bow-wave. I D  is the 
bridging shock, LC the new bow-wave. U is the speed of the oncoming shock, V ,  the speed 
of the flow behind the shock and W the speed of the wedge. B, C ,  D ,  E all lie on the sonic 
circle with centre 0 and radius c,t. O X ,  O Y  are axes of co-ordinates (Smyrl 1963). 

their work involves the solution of an elliptic problem with appropriate con- 
ditions imposed all round the boundary of the region of disturbed flow. The 
solution is found by trial-and-error procedure, using interferograms as a guide. 
It is shown, by an analytical argument, that the point at which the contact 
discontinuity from the triple point meets the wall is a point of concurrence of 
the lines of constant entropy and a point of minimum pressure along the wall, 
a feature confirmed by experiment. In  the second approach the variables 
x, y, t are retained in order to ensure that the equations remain hyperbolic in 
character, and the pseudo-stationary flow is allowed to ‘develop’, starting with 
the condition that a t  time t = 0 a plane shock, treated as a step-function, hits the 
wedge. The initial condition together with the requirement of tangential flow 
along the wedge is sufficient to determine the whole flow at later times. When the 
partial differential equations are replaced by finite difference equations for the 
numerical procedure, the initial discontinuities are automatically removed. 
A continuous initial-value problem arises, the solution of which reveals the loca- 
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tion of shocks and slip-stream by means of relatively sudden steep changes 
of density. In  this particular flow the density gradients appear to tend more and 
more with increasing time towards the pseudo-stationary form that must 
represent the limit as t + 00 and the method of starting up the flow becomes 
irrelevant. Entropy changes occur, at first sight a strange result when only the 
basic differential equations of an ideal, inviscid fluid are used. The density 

FIGURE 12. Numerical results showing the development of conical flow over a wedge 
after impact by a plane shock. The density gradients after cycles 0, 4 and 5 of the calcula- 
tion are illustrated. The co-ordinates are x/ao, y/ao, where a, is the speed of sound ahead 
of the advancing shock (Ludloff & Friedman 1955). 

gradients are indicated in figure 12. Already after the 4th cycle the split into 
reflected shock and Mach stem has occurred. These remarkable patterns stem 
from two features of the mathematics and physics, namely: 

(i) The difference between the differential and difference forms of the equa- 
tions of motion acts as a kind of artificial viscosity. This produces the necessary 
entropy changes. 

(ii) The Rankine-Hugoniot equations, giving the correct conditions on oppo- 
site sides of a shock wave, do not depend in any way on the viscosity coefficients; 
thus the artificial ‘viscosity) has only a catalytic role to play, for which it serves 
as well as the true viscosity. 

The idea of using an artificial viscosity, due to von Neumann, has been ex- 
ploited in a number of computations involving the propagation of blast waves. 
It has sometimes been deliberately programmed in a special form so as to be 
introduced whenever a compressive phase occurs. This technique has still an 
important part to play in the theoretical investigation of shock phenomena. 
I believe it has not been pursued more strongly because the early work did 
reveal difficulties as to the stability of the numerical solution. I understand 
that Richtmyer and his associates have recently taken up research again into the 
problem of the representation of shocks on computers. In  the Royal College of 

36- 2 
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Science and Technology, Glasgow, J. G. Fraser has been working on such repre- 
sentation with a view to a computational check on Smyrl’s work, and Warner 
(1963) has investigated the effect of shock impact on an explosive, determining 
relations governing the initiation of detonation under the effect of reaction in 
the explosive. 

4. Shock diffraction 
The solution of the problem of diffraction of waves of finite amplitude has not 

made as much progress as might have been hoped. The earliest work was done 
by Bargmann (1945), who, in an American report of limited circulation, used 
the pseudo-stationary property to develop a first-order solution for a weak shock 
reflected a t  a concave corner of small angle. This work assumed irrotational flow 
behind the shocks. It was followed up theoretically by Lighthill (1949a, 1950) 
who took into account the vorticity behind the curved shock waves. Lighthill’s 
method, free of the restriction to weak shocks, was nevertheless applicable only 
to conical flows. A more general approximate method was developed by Ting S: 
Ludloff (1952). An excellent summary of workinvolving approximate methods up 
to 1952 is contained in an article by Ludloff (1953), and there is some comparison 
between theory and experiment in the work of Fletcher, Taub & Bleakney (1951). 
Experimental data have been recorded by Bleakney, White & Griffiths (1950). 

The exact equations of pseudo-stationary flow have not as far as I know 
received a great deal of attention. Jones, Martin & Thornhill (1951) showed 
that when a strong shock followed by supersonic flow is deflected by a finite 
convex corner there is a limited region of Prandtl-Meyer flow near the corner 
expanding uniformly with time. This Prandtl-Meyer flow is a solution of the 
equations expressed in pseudo-stationary co-ordinates but its curved set of 
characteristics is completely different from the corresponding set in stationary 
flow. At the International Congress of Mathematicians in Amsterdam, Thornhill 
(1954) spoke about the corresponding problem of a shock with subsonic flow 
behind it relative to still air ahead. He discussed the behaviour of the subsonic 
pseudo-stationary streamline along the wall which has to separate a t  the corner. 
This streamline turns round to run tangentially into the inclined wall in a 
direction towards the corner and Thornhill conjectured that all other pseudo- 
stationary streamlines concur at the point where this happens. It is known from 
experiment that a vortex forms downstream of the corner in this situation. 
Furthermore, this vortex appears to grow in a pseudo-stationary manner. VCTork 
on the full equations seems to have expired a t  this stage, and I have nothing 
more to report on it ! 

Further examples of shock diffraction will be touched upon in the next 
section. 

5. Approximate solutions 
Between the analytical solutions of shock-wave problems, which are very few 

in number, and the numerical solution of shock-wave problems, which is a modern 
cult and naturally one of growing importance, comes the art of approximate 
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solution. I use the word art very deliberately ! Approximate solutions can be 
of tremendous importance if they yield even qualitative understanding of the 
dominating influences in a given physical situation; if they are capable of giving 
solutions that are quantitatively of sufficient accuracy, so much the better- 
they save a lot of complicated numerical work. 

A great deal has been written during the past 10 years on the subject. The 
most extensive progress started with the paper by Lighthill (1949 b)  on rendering 
approximate solutions of the equations of motion uniformly valid near to the 
singular lines, e.g. on characteristics. Whitham, who is acknowledged in Light- 
hill’s paper as having helped in the discovery of the method, but who seems to 
me to have been given insufficient credit by later writers, extended the theory 
(1950, 1952) to improve, for example, the understanding of the N-wave formed 
by a spherical shock wave following another such shock wave, as in a blast wave. 
The general idea is to find a means of taking into account the distortion of 
characteristics; the solution given by linearized theory is taken as a correct 
first approximation everywhere; a new variable r is introduced, which would 
be constant on the linear characteristic, and this has to be determined to make 
each wavelet r = const. travel with the correct speed, allowing for the non- 
linear convective effects. These methods have been adapted to both unsteady 
and steady problems involving two variables. In  1956 Whitham came forward 
with an extension of this theory to problems lacking directional symmetry. 
It is based on the fact that, according to the theory of sound, a wave front carrying 
a disturbance from a surface S of arbitrary shape moves along the normals to 
AS’ with the local speed of sound. Normals are orthogonal trajectories of successive 
positions of the wave front and are known as ‘rays’; they may be thought of as 
carrying the disturbance. The solution of this problem in the theory of sound 
gives the magnitude of the disturbance and the variation in the magnitude of the 
pressure jump at  the wave front as it moves out along a ray. Near the head of the 
wave the amplitude can be deduced from the approximation of ‘geometrical 
acoustics ’ without knowledge of the full solution, for in certain circumstances 
the energy propagated down a narrow ray tube formed by a bundle of neigh- 
bouring rays is conserved; we may neglect reflexion and diffraction of energy. 
Thus, since the flux of energy is proportional to a2A(s),  where a is the amplitude 
of the wave and A ( s )  the cross-sectional area of the ray tube at  a distance s 
along the ray, acc A-8. When a shock wave replaces the wave front we have to 
allow for the dissipation of energy, but nevertheless we may often assume that, 
for them also, the propagation down each ray tube may be treated separately. 
This gives a two-variable problem depending on time t and distance s. The effect 
is that if the strength varies along a shock, there will be a tendency for the shock 
to refract away from the position predicted by linear theory; thus the true 
orthogonal trajectories curve away from the straight rays; nevertheless, the 
displacement is small compared with s unless the strength varies rapidly along 
the shock, and may usually be neglected. Whitham applied this theory for weak 
waves to the N-waves such as occur in blast problems, unsymmetrical explosions, 
steady supersonic cone theory, thin wings of finite span and supersonic bangs. 
The restriction to propagation through a uniform medium is not essential. 
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If the sound speed is not constant, the rays curve as the wave front is refracted. 
The method might perhaps be used for the further generalization of non-uniform 
motion ahead of the shock, and I believe that the Royal Aircraft Establishment 
is looking a t  this a t  the present time with a view to understanding the refraction 
of a sonic bang moving through a shear layer in the upper atmosphere. 

These ideas led Whitham (1957,1959) on to the construction of an approximate 
method for strong shocks depending on using the position of shocks a t  successive 
instants of time and their orthogonal trajectories, which he calls ‘rays7, as a 
basis for orthogonal co-ordinates in two dimensions, He coupled with this system 
the idea of channelling the energy between the rays. When he tried to extend 
this notion to 3 dimensions he met the difficulties implied by Darboux’s theorem 
which states that a given set of surfaces cannot in general be one family of a set 
of orthogonal co-ordinates. He therefore started again from first principles 
(figure 13), describing the shock by a,t = a(x,y ,z) ,  where a, is the (constant) 

Shock at Shock at 
m e  z t ime t + S z  

FIGURE 13. Whitham’s basis of shock waves and rays for the approximate 
treatment of three-dimensional problems on tho propagation of shocks. 

speed of sound ahead of the shock, and letting 6s be distance along a ray between 
the shock positions a t  times t ,  t+&. Then since a,& = GslVal, the Mach shock 
number M is given by M = l/IVal. Let i(x,y,z) be the unit vector in the ray 
direct,ion, being normal to a,t = a. Then 

By considering a small length of a narrow ray tube with end sections parts of 
surfaces a = const. and letting A be proportional to the cross-sectional area 
of the tube, one may obtain the kinematical relation derived from the flux of 

V . (A-~BIVU)  = 0. (4 i/A , 

To solve any problem we must supplement this kinematical relationship with a 
dynamical one. Whitham chose to use the relation A = A ( M )  found by Chisnell 
(1957) by integration of Chester’s well-known formula for the change in Mach 
number due to a small change in channel area. Immediately behind the shock 
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the particles are moving in the direction of the rays, and the assumption is, 
once again, that later divergence of rays and particle paths is unimportant. 

In two dimensions ( 2 )  reduces to aslap = M-laAjaa, if p = const. denotes 
rays and 8 is the inclination of a ray to a fixed axis, say the x-axis. From (1) 
we may derive easily that ad/& = - A-laMlap. Both of these relations may be 
seen at once from a sketch of an elementary area in the (a ,  P)-plane. We are able to 
build up a theory of characteristics for these hyperbolic equations, for 

a result analogous to that for the invariants of two-dimensional steady flow or 
the Riemann invariants of one-dimensional unsteady flow. 

We have kinematical waves travelling in each direction on the shock face, 
and we may expect the theory to be usefully applied in diffraction problems 
because in these, as we have seen, the detailed flow behind the shock does 
not seem to affect the overall pattern in an essential way. The propagation 

FIGURE 14. Illust,ration of the passage of a ray tube across a shock-shock 
in three dimensions. 

speed dpjda is an increasing function of M ;  thus, by analogy, we may expect a 
wave with increasing M to break. Then it will be necessary to fit in a discontinuity 
in Mach number travelling along the shock. Whitham calls this a shock-shock. 
It has to be interpreted as the trace of a cylindrical wave spreading out in the flow 
behind the shock. In  a diffraction problem it thus represents the motion of the 
triple point. He uses the two-dimensional theory (1957) to discuss diffraction 
by a wall, including the interesting variation of reflexion from a near& plane 
wall, and the three-dimensional theory (1959) to treat of diffraction by a cone. 
The relations holding across a shock-shock in three dimensions (figure 14) 
are obtained by requiring (i) a to be continuous across it, or tangential derivatives 
equal on the two sides (0, 1); (ii) the projections of the ray tubes A,, A ,  on the 
shock-shock to be equal; this is equivalent to the statement that the flux of 
A-lM.Va is preserved across the discontinuity. It is interesting that the two 
equations obtained are analogous to continuity of tangential component of 
velocity and conservation of mass across an oblique shock, with V a  corresponding 
to the velocity and M I A  to the density p. To complete the analogy we should 
need a relation involving normal component of momentum and allowing for 
entropy changes. This would be equivalent to taking a different functional 
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dependence of A on ill in the two regions. This is not done, so we effectively 
assume potential flow behind a shock wave. 

This interesting paper led Bryson & Gross (1961) to carry out theoretical and 
experimental work on diffraction by cones, a cylinder and a sphere. For cones 
with shock Mach number 3-68 the shock-shock angle was measured and figure 15 
shows the agreement between observation and Whitham's theory. The experi- 
mental points tend to fall below the theoretical. While the theory gives Mach 

FIGURE 16. Shock-shock angle ?I 21s cone semi-apex angle 0, for shock Mach number 
X o  = 3.68; 0 Experimental points (Bryson 8r. Gross 1961). 

reflexion for all 0, (the semi-angle of the cone) one can see that x is practically 
equal to 0, for 8, > 70". Incidentally, I know of no analysis of the possibility 
of regular reflexion on a cone, although it has been claimed (see Courant & 
Friedrichs 1948) that reflexion with conical flow is not possible at  an axis of 
symmetry. The shape of the Mach shock can be found from Whitham's theory and 
is found to be practically straight except for very small 0,. The most extensive 
results were found for a +in. diameter cylinder with Mach number 2-84, but with 
two different pressures behind the undisturbed shock corresponding to a factor 10 
intheReynoldsnumber (8,O.S) x 104basedon the speed behind theincident shock. 
The diffraction pattern (figure 16, plate 2) was followed over a distance of travel 
of the incident shock of about 7 diameters. It is significant that the change in 
Reynolds number had no distinguishable effect on the loci of triple points. I 
use the plural because here we have first a regular reflexion at  the front of the 
cylinder, Mach reflexion beginning between the radii corresponding to 40" 
and 50"; the reflexion of the Mach stems at the rear is itself regular at first, and 
then produces a second Mach reflexion beginning at  rather less than one diameter 
behind the cylinder. (Diffraction on a sphere follows the same qualitative 
pattern). 
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When the first Mach reflexion begins the boundary-layer interaction causes 
the slip surface to curl up into a vortex. If one assumes that this vortex retains 
much the same circulation throughout its life, it should follow a particle path. 
Whitham identifies the rays, the orthogonal trajectories of the shocks, with 
particle paths, and figure 17 shows that the path of the vortex follows a ray 
closely until it approaches the plane of a symmetry at the rear of the cylinder. 

4 

1 

X I 0  

FIGURE 17. Diffraction on a cylinder; AT,, = 2.81. 0 Re = 7.79 x 104, 
A Re = 0.78 x lo4, + vortex locus (Bryson & Gross 1961). 

Whitham's theory predicted that the diffraction patterns would be the same 
for all incident Mach numbers M ,  2 3. The experimental loci of triple points 
coincided for M ,  = 2.85 and 41, = 4.41 with the shock-shock predicted for 

By approximating to the Mach shock by straight lines near the nose Bryson 
& Gross calculated the shock-shock position at 45" from the nose and then found 
it possible to continue right round and behind the cylinder, by means of the 
theory of characteristics for Whitham's equations, to account for the second 
shock-shock. For the sphere the calculation could not be extended so far, because 
the characteristics proved to be highly divergent. 

The method could be used for other, quite complicated axially symmetrical 
flows and for other problems where there is similarity of some kind. Whitham 
mentions, for example, diffraction on a flat-plate delta wing at incidence. 
Here a = xf (y/x, z/x), corresponding to cone field theory in supersonic flow. 
For genuine 3-variable problems the theory leads to partial differential equations 
quite similar to those occurring in the exact formulation of two-dimensional 
time-dependent gas dynamics, and numerical methods for this kind of equations 
have already been devised. 

M, 9 1. 
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6. Boundary-layer effects 
In all this we have been concerned in the main with the inviscid pattern without 

consideration of the effect of boundary layers. The properties of the oblique 
reflexion of a shock wave from the boundary layer on a body have been well 
understood for a decade. Lighthill (1953) explained upstream influence in 
a general way and it was shown that the role of viscosity was more important 
than was implied by the suggestion that it just provided a subsonic region 

Pressure I/- 
at wall ____----- -1 

(4 (4 
FIGURE 18. ( a )  Interaction with no flow separation; ( b )  interaction on laminar boundary 
layer with separation ; (c) interaction on laminary boundary layer causing transition to 
turbulent flow within the separated layer ; ( d )  interaction on turbulent boundary layer 
with separation (Pain & Rogers 1962). 

through which disturbances could propagate. One has to consider the interaction 
between the boundary-layer thickness and the pressure change it produces 
in the general stream. The positive pressure gradient provided by a shock 
causes a thickening of the boundary layer. The compression of streamlines 
increases the pressure gradient in a supersonic  stream. This causes further 
thickening and so on. Since the laminar boundary thickens much more easily 
than a turbulent one the effect is much more marked in a laminar one. The 
possibilities are shown in a schematic way in figure 18. 

I do not wish to dwell any longer on this kind of interaction. There is a good, 
brief account in the article by Pain & Rogers (1962). Rather I wish to turn 
to the problem of boundary-layer effects on shock waves moving along or normal 
to a wall. The problem is quite different from the one just mentioned, because 
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now, relative to the shock wave, the wall is in motion with supersonic speed. 
Indeed, the viscous effect is almost entirely downstream of the shock wave. 
The problem which has created the most interest concerns the propagation of 
the shock wave down a shock tube. The head-on reflexion from the rear-end 
is very complicated, because the reflected shock has to move through a flow 
with a growing boundary layer on the wall ahead of it. The inviscid core is not 
uniform in the direction of motion, even when one neglects relaxation effects 
and disturbances from the breaking of the membrane. Rudinger (1961) made an 
attempt on this problem, allowing for this non-uniformity and using the proper- 
ties of characteristics behind the reflected shock under the approximations 
that the fluid is at rest and the reflected shock speed constant. This work has 
recently been improved by Woods (1962) who has used perturbation methods 
similar to Goldsworthy’s to allow for the small motion behind the reflected shock. 
On the assumption of no separation of the boundary layer from the wall on 
passage through the shock he finds that, while the effect of the boundary layer 
itself is to reduce the pressure at the tube end as time goes on, the result of the 
non-uniformities of the flow ahead of the reflected shock is to raise it by a larger 
amount. While the analysis is improved in this paper, it  is not clear that it gives 
even as good agreement with experiment as Rudinger’s work. However, on the 
positive side, Woods has created a model of a separating boundary layer at  the 
wall including a ‘bubble ’ of boundary-layer air at the junction of shock wave and 
boundary layer; this ‘bubble’ arises when the stagnation pressure in the wall 
boundary layer is lower than the reflected shock pressure, causing separation of 
the layer. The ‘bubble’ grows with time, moves with the shock wave, and mass 
and vorticity are continually fed into it. Woods has found an initial pressure 
drop at  the tube end under these circumstances, as predicted by Mark (1958), 
and as observed by Holder & Schultz (1960). 

The incident wave in the shock tube, moving normal to the wall, produces the 
wall layer, and this in turn produces waves which tend to slow down the shock. 
There are several treatments of the boundary-layer flow. A general account 
has recently been given by Becker (1961). For a shock-wave or a simple wave 
moving along a wall (along the x-axis) with a laminar, unseparated boundary 
Zayer he uses axes fixed in the wall, takes ,! = I -x(u,t), where t is the time and 

uo a reference velocity, and replaces the normal co-ordinate z by z’ = 1; (p/p,) dx; 

he introduces 6 = z’/(vot)* and a stream function $ = u,(v,t)*f(&<) with tem- 
perature T = To*(,$, LJ, To and vo being a reference temperature and viscosity 
coefficient, respectively. He obtains similarity solutions in terms of the para- 
meter (T = <,!-$, equivalent to x’xd for axes fixed relative to the shock. For 
y = 1.4 the boundary-layer thickness (99 yo) parameter 6/(vet)*, where v, is the 
kinematic viscosity coefficient in the external stream, varies between 3.6 for weak 
shocks and 6.9 for very strong ones. He goes on to discuss turbulent layers, 
which of necessity have to be approached in a rather empirical manner. 

Mirels & Hamman (1963) have extended these ideas to two-dimensional and 
axially-symmetrical laminar boundary layers behind plane, cylindrical and 
spherical shocks moving according to the power law xcc tm. Typical cases arise 
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behind shocks from exploding wires in or normal to a plane, and the shock wave 
from an atomic explosion. 

It is not my intention to discuss the theoretical treatment of shock tube 
flows in particular-Bradley’s book does this in considerable detail-but to 
look at  it from the aspect of shock reflexion. The solution for laminar flow has a 
singular point at  the foot of the shock. The shock is always normal to the wall 
in this solution, while to be physically correct the shock must be curved at  the 
wall, on account of the action of the boundary layer. This follows whether the 
boundary layer is looked upon as a thin obstacle past which the outer flow is 
deflected, or whether the simpler fact is taken into account that the stream has no 
change of direction or speed relative to the shock at the wall. Shock-tube experi- 
ments seem to indicate that the effect is not readily observable or significant 
at ordinary densities. But in experiments at  low density, the curvature is marked 
and the interaction certainly not negligible. An attempt to allow for shock 
curvature was made first by Hartunian (1961)) who took for the assumed small 
vertical perturbation velocity behind the shock on a flat plate the function 

v(x, 0) = Bx-4, 

treating the boundary layer as a slender body. He supposed the shock wave to 
be perturbed by a small angle 8 and, assuming a weak shock, neglected the vor- 
ticity downstream. With u(0, y) = 0, for the horizontal perturbation velocity u, 
with u, v -+ 0 as y --f 00, he solved the linearized equation 

p2q?sl.,. + ~ y y  = 0, where kV = p2u, q?x = - v and p z  = 1 - M,2 

and found a shock wave of finite curvature but tangential to the plate at  its 
foot. It is clear, after reading this paper, that some account must be taken of 
shock structure if this problem is to be solved in a physically acceptable manner, 
and an attempt has been made by Sichel(1962). For a weak shock there is little 
difference between free stream and wall speed, and so the boundary layer 
equations may be linearized. Mirels (1955) proved that this gives an excellent 
approximation to exact solutions for weak shocks. Sichel subdivides the leading 
edge flow into a shear layer near the wall dominated by the transverse shear 
stress and a free stream or shock region where the longitudinal viscous stress is 
most important. He expands in powers of a small parameter e denoting the 
departure of the Mach number from unity and he stretches the co-ordinate 
system x with respect to shock thickness A, and y with respect to shear-layer 
thickness 6. The shock thickness, following Lighthill (1956)) is given by h = v*/ 
a*€, where * denotes the sonic condition, 1’ the kinematic viscosity and a the 
speed of sound, while 6 is not known n prior;. He does an order-of-magnitude 
analysis to show that 6/h = O ( d )  for weak shocks and that v = O ( E ~ ) .  His 
equations reduce to Mirels’s linearized boundary-layer equations with variable 
free-stream pressure. The boundary-layer approximation can be extended 
right to the base of the shock wave if the latter is weak. The equation for the first- 
order perturbation @ to the x-component, u, of the velocity is of heat-conduc- 
tion type, and can be readily solved with external flow u(l) (x, 00) corresponding to 
Taylor’s weak shock structure. The downstream flow turns out to be asymptotic 



Rejexion and diffraction of shock waves 573 

to Mirels’ solution, as one might expect (figure 19). Unfortunately v(x, co) = O ( d )  
which is appropriate to an oblique transonic shock, but the free stream flow 
cannot be represented exactly by such a shock because there is no reason why 
it should produce the required variation of v(l)(x, 00) generated by the shear 
layer. Sichel concludes, as Sternberg did, that the shock structure must be two- 
dimensional near the outer edge of the shear layer. He then describes the non- 

Mirels’s weak 
shock soluhon 

----- Exact numerical 
solution 

Ax 
FIGURE 19. Lines of constant velocity w-ithin the shear layer. Velocities are made non- 
dimensional with respect to the critical speed. The parameter A occurs in the Taylor 
solution for the structure of a weak one-dimensional shock, for which, with u = 1 + dl), 
dl) = - tanh Ax (Sichel 1962). 

Hugoniot shock region by appropriate Navier-Stokes equations in terms of 
x and 9 = ya*et/v*. On the basis of a dimensional analysis he shows that, for 
the weak shock, the flow will be irrotational and that, with u = $z, v = $6, the 
Navier-Stokes equations for an ideal gas lead to the potential equation 

(1 + (Y - l ) /P , )  $,,, - (Y + 1) $.r#.rz + $96 = 0, 
where Pr is the Prandtl number. The details of the derivation for a general gas 
are given in a report by Sichel (1961)t. He has called this equation the viscous- 
transonic equation. The first term represents the dissipative effects of heat 
conduction and longitudinal viscous stress, the second is convective in origin 
and the third term is required by the conservation of mass, coming in because 
the viscous flow under consideration is two-dimensional. The equation reduces 

I am indebted to Dr A. B. Tayler for this reference. 
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to the transonic equation when the first term drops out, and to Burgers’ equation 
for one-dimensional steady flow when the last term disappears. Unable to solve 
his equation with the correct v(1) Sichel makes do with the well-known Taylor 
shock structure with a uniform velocity parallel to the shock to obtain 
and 4) for an oblique transonic shock inclined at an angle CT to the vertical where 
IJ = ad and a is called the obliquity parameter. This is actually a solution of the 
viscous-transonic equation. He chooses a by making the maximum vertical 
velocities downstream of the shock and in the outer edge of the shear layer equal, 
and shows that for this particular value there is quite good matching of the 
dl) profiles near the base of the shock. He now seeks to find the inviscid flow 
between the shock and shear layer, and he does this by solving Laplace’s equa- 
tion for this region, by an iterative method. His method, in the end, turns towards 
Hartunian’s but he has removed the singularity in the velocities and obtained 
a finite angle of the shock at  the wall. It is interesting to note, however, that 
his results are asymptotic to Hartunian’s and, indeed, indistinguishable from 
the latter at four or five shock thicknesses away from the leading edge. Also, 
an interesting consequence of the difficulties of the analysis is the infinite curva- 
ture that even Sichel is left with, at  the last, at  the foot of the shock. It is signifi- 
cant that Hugoniot conditions are no longer satisfied in the interaction zone, 
where the horizontal velocity overshoots its Hugoniot value, representing the 
sucking of fluid into the boundary layer. 

7. Conclusion 
I have said enough, I think, to show the close relation between all these re- 

flexion problems. The outcome seems to me to be that the methods of the applied 
mathematician are vindicated, very largely, unless one really wants to know 
the intimate details of the reactions near the triple point or the base of a shock ! 
The progress is quite clear. Sichel has pointed out that his methods could be 
applied to Mach reflexions. I think it would be interesting to use methods like 
Hartunian’s to deal with the reflexion of an oblique shock, or like Sichel’s using 
two Taylor waves in tandem for the external flow. CouId one not find the soh- 
tion by numerical methods, assuming such an external flow, for the Navier-Stokes 
equations in two dimensions? The problem is of interest from the point of view of 
blast and also, particularly for weak waves, in the effect, on reaching the ground, 
of air shocks from aircraft. This problem has engaged the attention of the Royal 
Aircraft Establishment where it was found that while records taken at  some feet 
above the ground show very sharp incident and reflected shocks, the records 
taken at ground level show shocks a foot thick or thereabouts. Calculations 
of the kind I have indicated might throw light on these results. 

It will be noticed how little has been said about anything other than two- 
dimensional flows. There is need to study the reflexion of spherical shocks from 
one another and from the ground, in connexion with true blast studies, and 
related to this is the reflexion of shocks moving through non-homogeneous layers 
like the earth’s atmosphere. Lastly, the extension of many of these solutions to  
flows involving other than very weak shocks, while probably requiring numerical 
techniques, would be of considerable importance. 
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